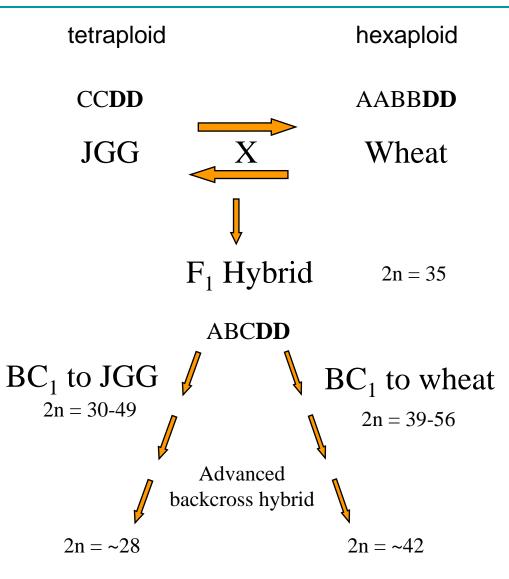
Weed Management and Weed Genetics: Jointed Goatgrass: Case Study for Gene Flow

Carol Mallory-Smith – Oregon State University Robert Zemetra – University of Idaho

WSWS Jointed Goatgrass Symposium 2009

Wheat will form hybrids with jointed goatgrass in the field.


Background

- Research started in 1991 with the discovery that hybrids had produced viable seeds
- Experiments were conducted over 17 years to answer questions concerning the potential for gene flow between wheat and jointed goatgrass
- This research took on more importance with the development of herbicide resistant wheat

Initial questions addressed:

- What was the source of seed on the hybrids?
- How common are the hybrids?
- Would backcrossing occur in the field?
- Would additional generations of backcrossing occur?
- Would self-fertility be restored; if so in what generation?

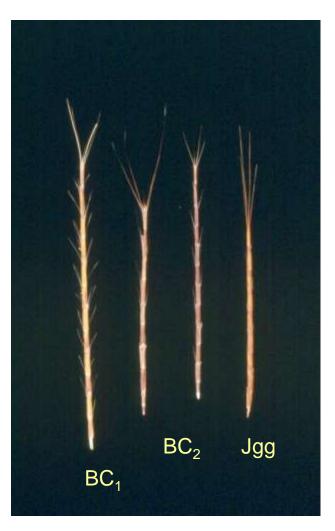
Source of seed on hybrids

- Initial research demonstrated that the seed on the hybrid plants was due to backcrossing to either wheat or jointed goatgrass
- While the hybrids are male-sterile, they are partially (~ 2%) female- fertile
- The common D genomes are a probable explanation for the partial female fertility

Wheat x jointed goatgrass hybrids crossed to either wheat or jointed goatgrass at the same frequency
 <u>Cross</u>
 <u>% Seed Set</u>
 Hybrid x JGG
 2.2
 Hybrid x Wheat
 2.0

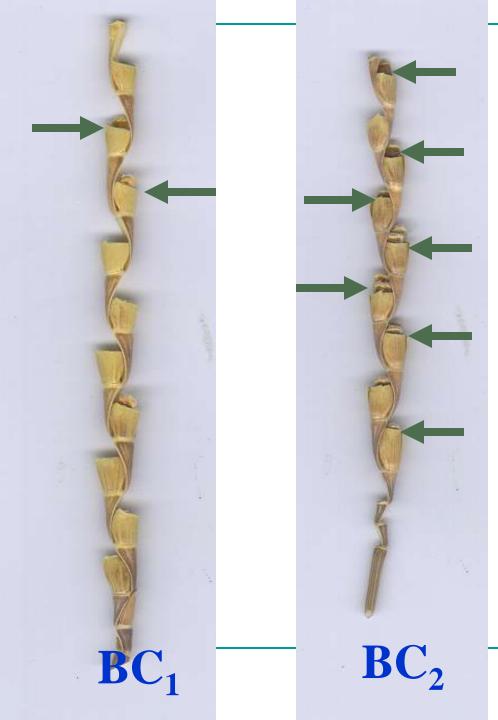
Fertility restoration

- Chromosome number in the backcrosses decreased with each cycle of backcrossing, approaching that of the recurrent parent jointed goatgrass (28)
- The increase in homologous chromosome pairs in later backcross generations helps explain the increase in female fertility and the restoration of self-fertility


How many hybrids are out there?

Oregon hybrid collection

	Total	Fertile	Total	Fertile	Sterile	Total
Year	plants	plants	seed	spikes	spikes	spikes
1998	86	42	222	165	753	918
1999	269	129	504	400	1834	2280
2000	399	157	502	335	1984	2319
Total	754	328	1228	900	4571	5517


Jointed goatgrass-like backcross hybrids

 BC_1 F_1 Jgg

Experimental

Wheat-field

In greenhouse studies:

- Average female fertility in the BC₁ generation increased from 4.4% -5.1% (range 0.0 to 20.3%)
- Fertility increased in the BC₂ generation with partial restoration of self-fertility from 6.9% to 20.9% (range 0 to 73.2%)

Backcrossing under field conditions Hybrids and BC₁ plants planted in the field with jointed goatgrass backcrossed at a similar frequency as was observed in the greenhouse

Gene flow at the field level

JGG

Wheat

JGG

Results led to additional questions

- Could we determine the direction the crosses were occurring?
- Does gene introgression occur?
- Could genome placement of a resistance gene prevent gene introgression?

Determination of parentage

- Methods were developed to determine the parentage of the backcrosses found in the field.
- These methods included:
 - high molecular weight glutenin
 - genomic in-situ hybridization (GISH)
 - molecular markers

Determination of parentage

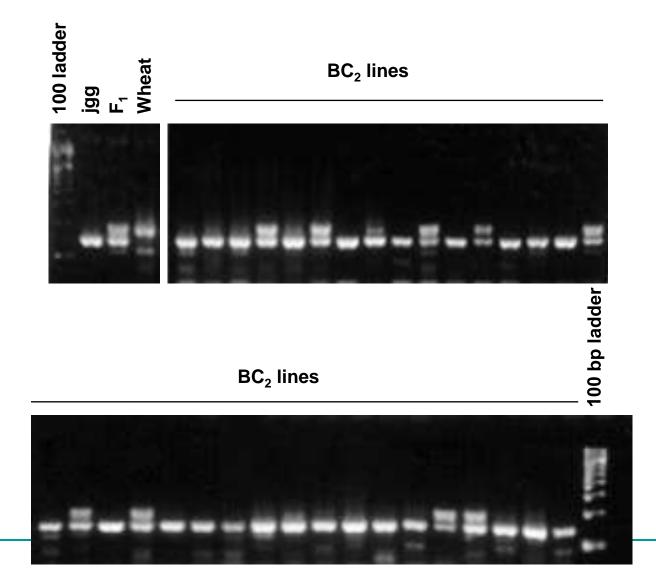
Use of GISH allowed for determination of:

- recurrent backcross parent
- chromosome retention
- chromosome introgression

BC_2S_2 line: (wheat x jgg) x jgg

A/B genome

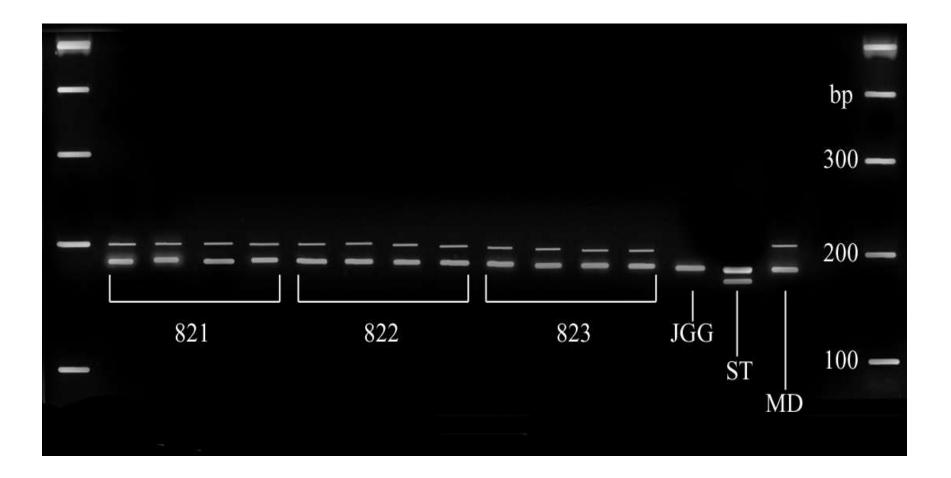
Translocation



A/B genome

Introgression did occur

- Molecular markers confirmed introgression of wheat chromatin and wheat genes into BC₂ plants that had jointed goatgrass as a recurrent parent
- Wheat chromatin was retained at the expected Mendelian frequencies


PCR amplification of the wheat microsatellite gwm44

Expression of traits

- Gene introgression and expression was confirmed:
 - Imi1 gene for imidazolinone resistance on chromosome 6D
 - Pch1 gene for Cercosporella foot rot resistance on chromosome 7D
- Plants have 28 chromosomes and are both imidazolinone and foot rot resistant

Foot rot resistance marker Xorw1

Does genome placement matter?

- Based on our results, movement of a gene located on the D genome from wheat to jointed goatgrass would not be difficult
- Hypothesis: More difficult to move gene from A or B to wheat because those genomes are not shared
- To test the hypothesis, the herbicide resistance gene for glyphosate was used

To test the hypothesis:

- Wheat carrying glyphosate resistance on the A,
 B or D genome was crossed to jointed goatgrass
- A second aspect of this study was to determine the impact of selection pressure on gene migration and retention
 - the BC₁ generation was split into two subpopulations - sprayed and unsprayed

Comparison Gene Transmission (1D-BC₂)

Wheat X JGG

Wheat X JGG

F₁ 100% resistance X JGG

BC₁ (sprayed) x JGG Resistance = 74% Germination = 56 % F₁ 100% resistance X JGG

BC₁ (unsprayed) x JGG Resistance = 64% Germination = 40%

BC₂ Resistance = 75% Germination = 10% BC₂ Resistance = 54% Germination = 60%

Comparison Gene Transmission (6A-BC₂)

Wheat X JGG

Wheat X JGG

F₁ 100% resistance X JGG

BC₁ (sprayed) x JGG Resistance = 81% Germination = 63 % F₁ 100% resistance X JGG

BC₁ (unsprayed) x JGG Resistance = 84% Germination = 71 %

BC₂ Resistance = 100% Germination = 36% BC₂ Resistance = 42% Germination = 77%

Comparison Gene Transmission (4B-BC₂)

Wheat X JGG

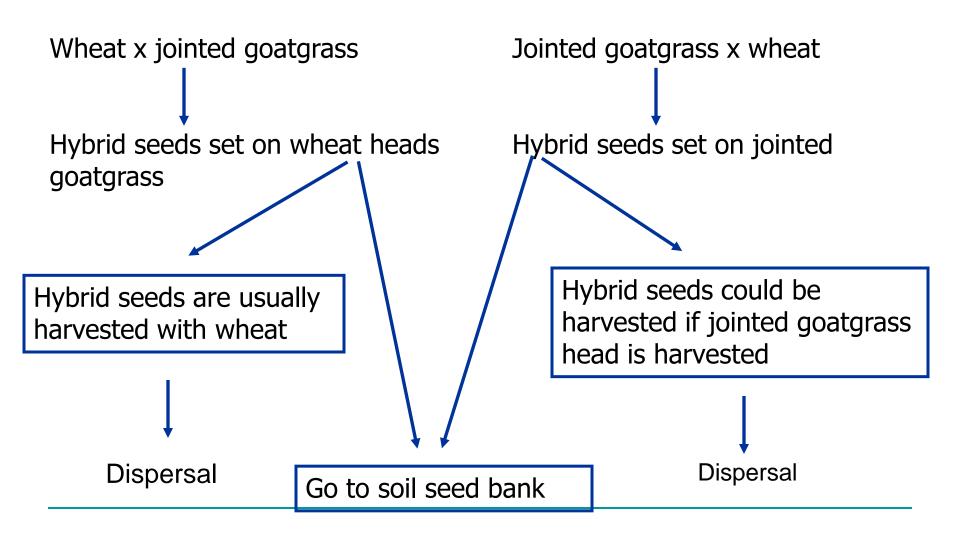
Wheat X JGG

F₁ 100% resistance X JGG

BC₁ (sprayed) x JGG Resistance = 60% Germination = 71 % F₁ 100% resistance X JGG

BC₁ (unsprayed) x JGG Resistance = 59% Germination = 47 %

BC₂ Resistance = 96% Germination = 36% BC₂ Resistance = 50% Germination = 69%


Genome placement – not the solution

- These results indicate that genome placement would not prevent gene flow from wheat to jointed goatgrass
- When glyphosate was applied, gametic selection occurred that decreased the number of BC₂ plants produced but increased the number of BC₂ plants carrying the resistance gene

Can gene migration be prevented?

- The key to reducing the potential for gene flow between wheat and jointed goatgrass is to reduce or eliminate hybrids and the BC₁ generation in the field
- Preventing the BC₂ generation will prevent restoration of self-fertility, thus preventing gene flow

Wheat x Jointed Goatgrass Seeds in Wheat Fields

2008 – Clearfield Wheat Field With Imazamox Resistant Hybrids

OSU/UI jointed goatgrass program

Idaho R. Zemetra J. Hansen Z. Wang M. Rehman B. Hanson A. Hang

Funding National JGG Initiative NRI-Weed Science IFAFS

Oregon **C. Mallory-Smith O. Riera-Lizarazu** I. Vales A. Perez-Jones J. Snyder L. Kroiss L. Fandrich L. Cremieux J. Cannon H. Gandhi L. Morrison P. Tempalli **E. Sanchez B.** Martins

Publications:

Zemetra, R.S., J. Hansen, and C.A. Mallory Smith. 1998. Weed Sci. 46:313-317.

- Seefeldt, S.S., R. Zemetra, F.L. Young, and S.S. Jones. 1998. Weed Sci. 46: 632-634.
- Snyder, J., C. Mallory-Smith, J. Hansen, S. Balter, and R.S. Zemetra. 2000. Weed Sci. 48:588-593.
- Wang, Z., A. Hang, J. Hansen, C. Burton, C.A. Mallory-Smith, and R.S. Zemetra. 2000 Genome 43: 1038-1044.
- Wang, Z., R.S. Zemetra, J. Hansen and C.A. Mallory-Smith. 2001. Weed Sci. 49: 340-345.
- Wang, Z., R.S. Zemetra, J. Hansen, A. Hang, C.A. Mallory-Smith, and C. Burton. 2002. Crop Sci. 42: 939-943.
- Kroiss, L.J., P. Tempalli, J. L. Hansen, M. I. Vales, O. Riera-Lizarazu, R. S. Zemetra, C. A. Mallory-Smith. 2004. Crop Sci 44:1429-1433.
- Hanson, B.D., C.A. Mallory-Smith, B. Shafii, D.C. Thill, and R.S. Zemetra. 2005. Crop Sci 45:1610-1617.
- Gandhi, H., M.I. Vales, C. Watson, C. Mallory-Smith, N. Mori, M. Rehman, R.S. Zemetra, and O. Riera-Lizarazu. 2005. TAG 111:561-572.
- Rehman, M., J.L. Hansen, J. Brown, W. Price, R.S. Zemetra, and C. Mallory-Smith. 2006. Weed Sci. 54: 690-694.
- Perez-Jones, A., C. A. Mallory-Smith, O. Riera-Lizarazu, C. J. W. Watson, Z. Wang, M. Rehman, and R. S. Zemetra. 2006. Crop Sci 46: 2155-2160.
- Perez-Jones, A., C.A. Mallory-Smith, J. Hansen, and R. S. Zemetra. 2006. TAG. 114: 177-186.
- Ghandi, H., C. Mallory-Smith, C. Watson, M.I. Vales, N. Mori, R.S. Zemetra, and O. Riera-Lizarazu. 2006. Weed Sci : 54:1073-1079.
- Fandrich, L., C.A. Mallory-Smith, R. S. Zemetra, and J.L. Hansen. 2008. Weed Sci. 56: 534-542.
- Morrison, L.A., O. Riera-Lizarazu, L. Cremieux, and C. A. Mallory-Smith. 2002. Crop Sci. 42:1863-1872.
- Hanson, D.E., D.A. Ball, and C.A. Mallory-Smith. 2002. Weed Tech. 16:156-163.
- Morrison, L.A., L.C. Cremieux, and C.A. Mallory-Smith. 2002. Weed Sci. 50:737-747.
- Fandrich, L. and C. A. Mallory-Smith. 2005. Weed Sci. 19:594-599.
- Fandrich, L. and C. A. Mallory-Smith. 2006. Weed Sci. 54:695-704.
- Fandrich, L.and C. A. Mallory-Smith. 2006. Weed Sci. 443-451
- Fandrich, L. and C. A. Mallory-Smith. 2006. Weed Sci. 54:677-684.
- Mallory-Smith,. C.A., J. Hansen, and R.S. Zemetra. 1996. 2nd Intl. Weed Control Congr.
- Mallory-Smith, C.A. 1999. Gene Flow and Agriculture, Brit. Crop Protec. Council, Symp. Proc. No. 72, pp. 165-169
- Zemetra, R.S., C.A. Mallory-Smith, J. Hansen, Z. Wang, J. Snyder, A. Hang, L. Kroiss, O. Riera-Lizarazu, and I. Vales. 2002. Scientific Methods Workshop:. 150-159.
- Morrison, L.A., O. Riera-Lizarazu, M.I. Vales, L. Cremieux, R.S. Zemetra, J. Hansen, and C. Mallory-Smith. 2002. Proc. 4th Intl. Triticeae Symp. pp. 125-130.
- Riera-Lizarazu, O., M.I. Vales, L.A. Morrison, R.Z. Zemetra, D. Morishita, J. Hansen, and C.A. Mallory-Smith. 2002. Proc. 4th Intl. Triticeae Symp. pp. 201-205
- 6 MS students
- 7 PhD students
- 2 in press
- 3 in preparation

