INTEGRATED MANAGEMENT OF JOINTED GOATGRASS IN THE PACIFIC NORTHWEST

A Researcher's Dream

Cooperating Scientists

USDA-ARS

Alex Ogg Jr. Steve Seefeldt UI

Donn Thill Bob Zemetra

WSU

Joseph Yenish Laylah Sullivan OSU Dan Ball Carol Mallory-Smith

Palouse Region

Steep topography

Winter precipitation (Mediterranean climate) Severe erosion

Winter wheat yield

Information to Share

- **1.** Spring-germinating JGG study
- 2. Imi-wheat study
- **3. Plow study**
- 4. Integrated weed management study
- **5.** JGG resistance study

Spring-Germinating JGG Study

The primary purpose of spring crops in JGG management systems is to prevent viable weed seed production and to facilitate the depletion of the soil weed seedbank.

Spring-germinating JGG can produce viable seed....need to delay planting 2 wks past optimum

Plow Study

Based on question: "What can I do, when I am not growing winter wheat, to expedite my return to winter wheat production?

Treatment 2

Plow Study, Cntd.

No-till SW ↓ JGG populations and spikelets more rapidly than ChF/C[®]WW.

One-time spring deep plowing followed by no-till SW ↓ JGG populations more rapidly than continuous no-till SW.

In identical crop sequences, shallow preplant tillage annually after one-time spring deep plowing \downarrow JGG populations and spikelets compared to no-till crops after one-time plowing.

IMI-Wheat Study

Objective: Identify a stable crop production system that reduces JGG infestations based on time and frequency of the introduction of C[®]WW.

Location:

High rainfall zone – WW-SB-SL (3 cycles) Low rainfall zone – WW-Fallow (3 cycles, 2 locations)

Results Imi-Wheat

Based on crop yield, JGG populations and spikes produced:

Treatments $\mathbb{C}^{\mathbb{R}}$ - $\mathbb{C}^{\mathbb{R}}$ - $\mathbb{C}^{\mathbb{R}}$ $C^{\mathbb{R}}-C^{\mathbb{R}}-N$ $C^{\mathbb{R}}$ -N- $C^{\mathbb{R}}$ N-C[®]-C[®] N-C[®]-N N-N-C®

IWM Study

Goal: A project designed to utilize the information generated from the many single component jointed goatgrass research studies conducted in the PNW.

IWM Study, Cntd.

- 1. Develop an IWMS for JGG in WW.
- Stubble burning, length of rotation, and integrated WW planting practices.
- Identify profitable and economically stable crop production systems.

IWM Locations Idaho – light Washington – light to moderate Oregon – heavy

Treatments
Stubble burning
Length of crop rotation
Integrated planting - WW

Stubble Burning

- >90% Control
- Soil surface
- High population

Rotation

- WW-Fallow 1 yr
- WW-SB-Fallow 2 yr
- SW-Fallow-WW-Fallow 3 yr

IWM For Winter Wheat Integrated Standard ✓ Fertilizer ✓ Fertilizer Competitive cultivar ✓ Standard cultivar ✓ Increased seed size ✓ Normal seed lot ✓ Increased density ✓ Normal density ✓ Hoe - drill ✓ Double disk/Deep furrow

Oregon Site

Highest weed population
Same wheat variety
F-WW-F-WW & F-SW-F-WW

Materials And Methods (Initial)

- Weed seed sampling (August 96')
- Stubble burn (August 96')
- Weed seed sampling (August 96')

Base line jointed goatgrass populations in ID, WA, and OR (#)

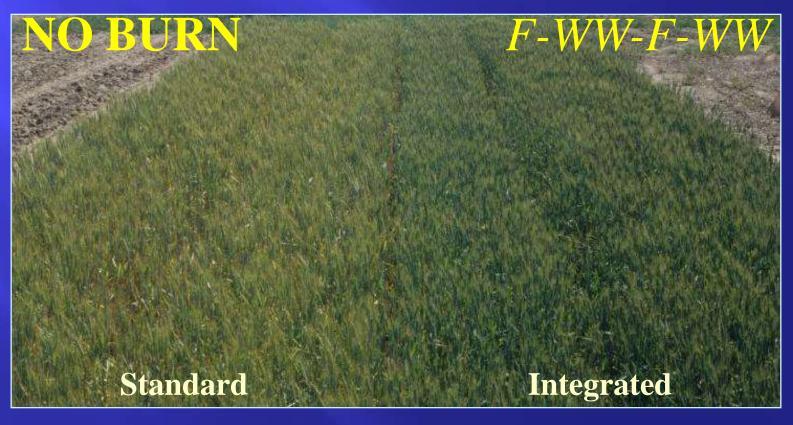
Depth	ID	WA	OR
Surface	4	51	245
0 to 10cm	6	4	34
10 to 20cm	3	<1	3

Stubble burning effect on jointed goatgrass (#)

Site	Burn	Spikelets	Seed	Viable
ID	Y	2	5	2
	Ν	6	9	8
WA	Y	20	20	2
	Ν	50	65	60
OR	Y	200	225	25
	Ν	275	375	360

Materials & Methods (1st Crop)

Winter WheatSpring WheatPrimary tillage (F 96')- Chem fallow
(F 96' - S 98')Fertilized (S 97')(F 96' - S 98')Tilled as needed- No-till SW (S 98')Planted WW (F 97')


Statistics

- HSU's multiple comparison used to select best treatment combinations with 95% confidence level
- Allows growers to identify the best combination of treatments for optimum production

Best combination of treatments for optimum yield and reduced dockage in 1998

			Yield	Dockage
Burn	Rotation	Practice	(kg ha ⁻¹)	(%)
Y	WW	S	3495	1.69
Y	WW	Ι	4255**	0.36*
Ν	WW	S	3190	3.07
Ν	WW	Ι	4190*	0.48*
Y	SW-WW	S	3225	0.18*
Y	SW-WW	Ι	3135	0.04**
Ν	SW-WW	S	2655	0.32*
Ν	SW-WW	Ι	2905	0.67*

Materials And Methods (2nd Crop)

Standard

- Summer fallow
 (F 98' F 99')
- Fertilized (S 99')
- Planted 76 kg ha⁻¹

Integrated

- Summer fallow
 (F 98' F 99')
- Fertilized (F 99')
- Planted 118 kg ha⁻¹

Best combination of treatments for optimum yield and reduced dockage in 2000

			Yield	Dockage
Burn	Rotation	Practice	(kg ha ⁻¹)	(%)
Y	WW	S	2505	8.5
Y	WW	Ι	3005*	4.1*
Ν	WW	S	2250	19.5
Ν	WW	Ι	2905*	6.3
Y	SW-WW	S	2585	4.0*
Y	SW-WW	Ι	2840*	1.4**
Ν	SW-WW	S	2705	8.3
Ν	SW-WW	Ι	3110**	4.3

Best combination of treatments for optimum reduction of JGG density in 2001

			Plants
Burn	Rotation	Practice	(m -2)
Y	WW	S	103
Y	WW	Ι	75*
Ν	WW	S	173
Ν	WW	Ι	122
Y	SW-WW	S	38*
Y	SW-WW	Ι	24**
Ν	SW-WW	S	80*
Ν	SW-WW	Ι	60*

Overall Best Treatment Combination

One-time stubble burn, F-SW-F-WW rotation using integrated WW management practices

JGG Resistance Study

Preliminary: Possible development of some resistant JGG biotypes although manifestation of resistance in these plants is not holding with the typical genetic ratios.

Keep in mind why you are doing what you are doing.

QUESTIONS?

Integrate, Integrate, Integrate!

Statements by expert witnesses

Zemetra *Wheat and JGG Genetics

Mallory-Smith *Herbicide Resistance

Shaner *Imidazolinones

⁶⁶Not sure⁹⁹

