Current Status of Herbicides for Controlling Invasive Knotweeds in the United States

Tim Miller WSU Mount Vernon NWREC

World Class. Face to Face.

Herbicide Trials for Knotweed Control

- North American herbicide trials
 - Ahrens (1975) showed positive results from foliar glyphosate
 - Trial by Jennings and Fawcett (1977) tested foliar and cut stem applications of glyphosate and triclopyr

Herbicide Trials for Knotweed Control

- North American herbicide trials
 - Trial by Scott and Marrs (1985) used two applications of fosamine, glyphosate, simazine, triclopyr, and picloram
 - Picloram was by far the most effective, although glyphosate rate was probably too low (2 lbs ae/a)
 - Trial by Figueroa (1989) used 2,4-D, clopyralid, dicamba, glyphosate, imazapyr, and metsulfuron
 - Imazapyr, clopyralid, and glyphosate reduced stem number and height by more than 50% by one year after treatment
 - Only imazapyr maintained control (up to five years)

Herbicide Trials for Knotweed Control

- More recent trials
 - Crockett (2003) reported on work involving injection of glyphosate concentrate
 - 5 ml full-strength product into lower stem
 - 10 ml 50% product in water
 - Volmer (2006) reported on tests with imazapyr and glyphosate
 - Excellent control from 0.75 to 1.5%
 - Trials by Skibo (2006) showed some activity with mesotrione

Greenhouse Trial, 2003-04

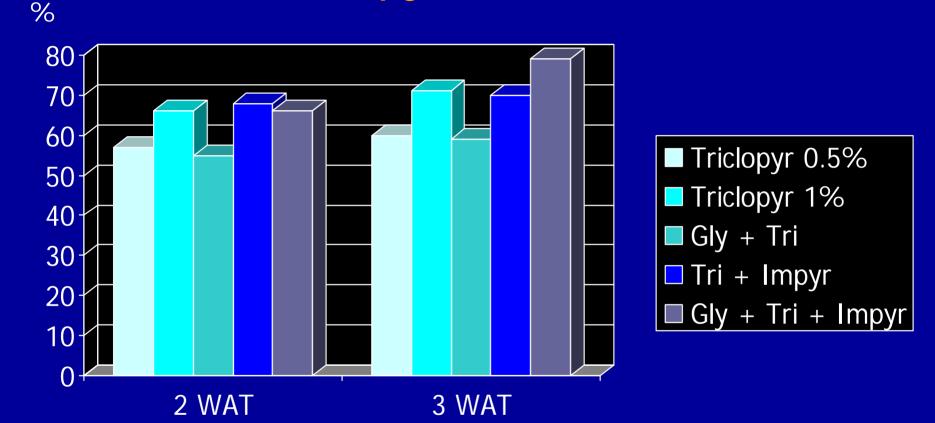
- Knotweed plant material
 - Bohemian and giant knotweed shoots (Mount Vernon)
 - Himalayan knotweed shoots (Cape Disappointment)
 - Giant knotweed seedlings (Big Quilcene River)
 - Two separate populations of Bohemian knotweed seedlings (Japanese knotweed female parent, unknown male parent; Acme and Marblemount)

Greenhouse Trial, 2003-04 Materials and Methods

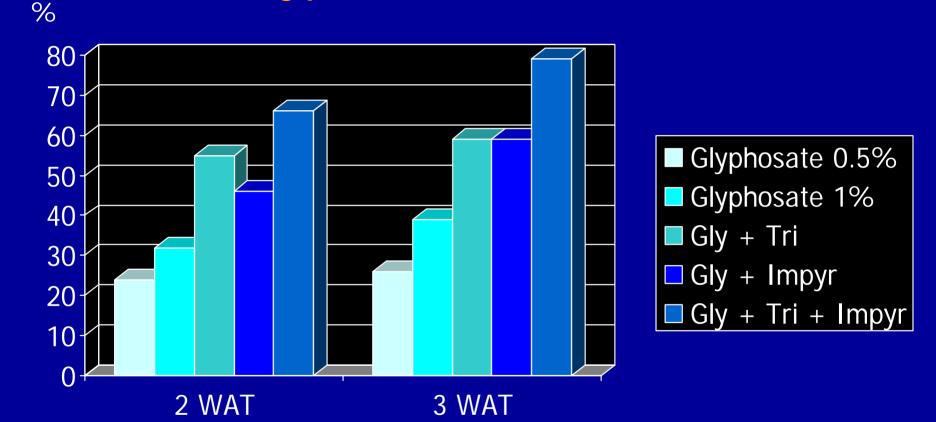
- Foliar treatments of glyphosate (Aquamaster), triclopyr (Garlon 3A or Renovate), or imazapyr (Arsenal or Habitat) applied in summer
 - -0.5% each
 - 1% each
 - 0.5% each in 2-way combinations
 - 0.3% each in 3-way combination
- All plants cut three weeks after treatment and re-growth monitored

Giant seedling

Bohemian transplants

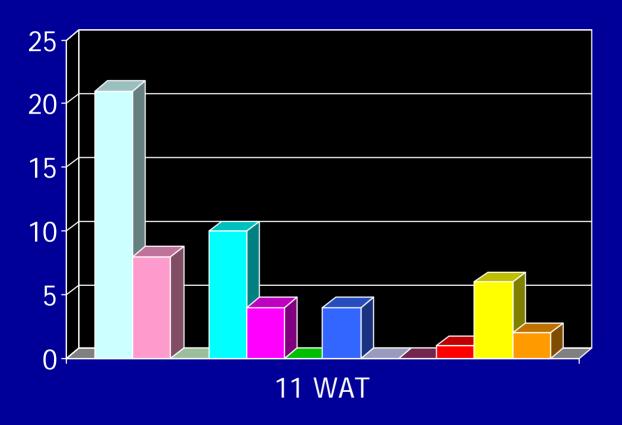


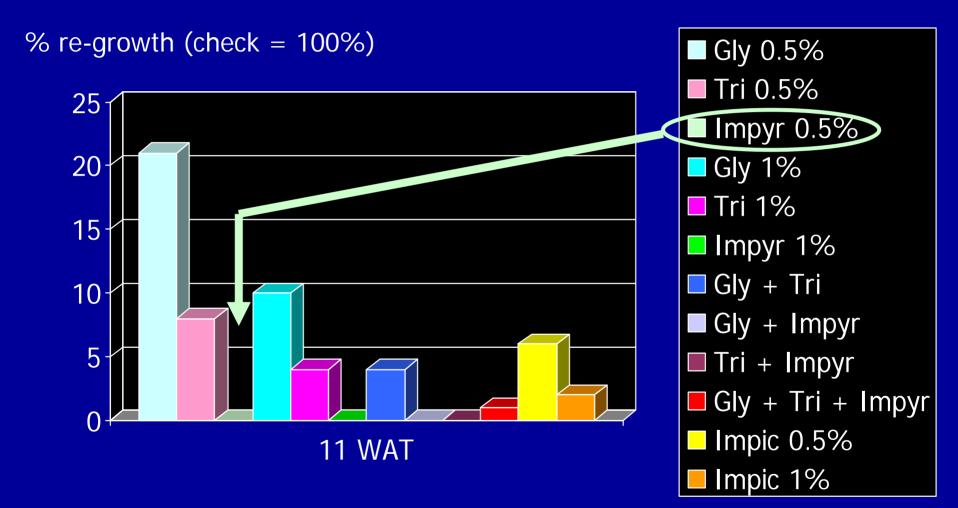
Untreated

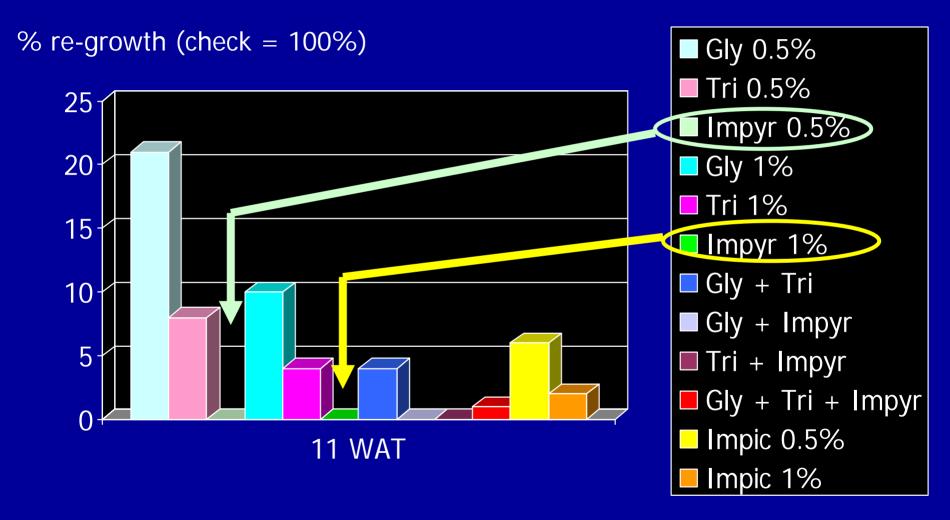

Three weeks after triclopyr at 1%

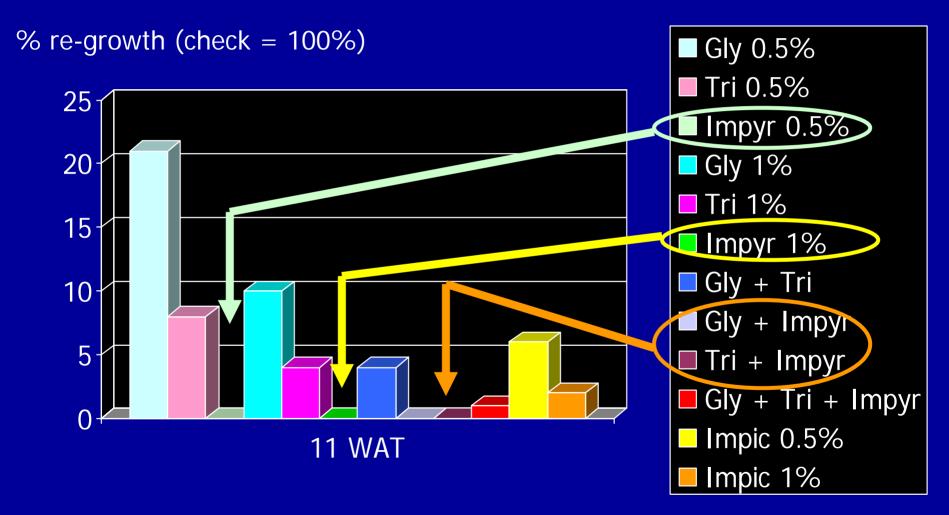
Early Bohemian Knotweed Injury Triclopyr, 2003-04

Early Bohemian Knotweed Injury Glyphosate, 2003-04


Before and after clipping



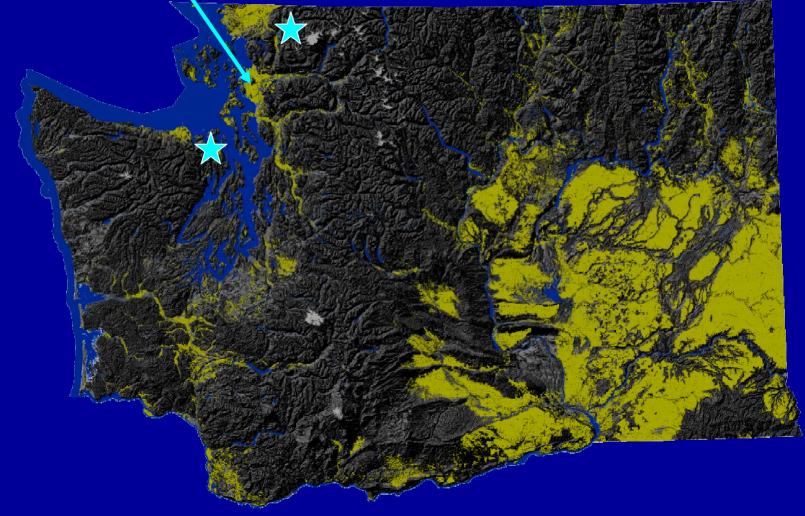

Bohemian knotweed re-growth Eleven weeks after glyphosate at 0.5% (eight weeks after clipping)


% re-growth (check = 100%)

Gly 0.5% Tri 0.5% Impyr 0.5% Gly 1% Tri 1% Impyr 1% 🗖 Gly + Tri Gly + Impyr Tri + Impyr Gly + Tri + Impyr Impic 0.5% Impic 1%

Field Knotweed Trials

Field Trials, 2003-05 Materials and Methods


- Giant knotweed (Big Quilcene River, Jefferson County, WA; Cathy Lucero, co-investigator)
 - Treated at early flowering
- Bohemian knotweed (Hutchinson Creek, Whatcom County, WA; Laurel Baldwin, co-investigator)

- Treated at early flowering or after petal fall

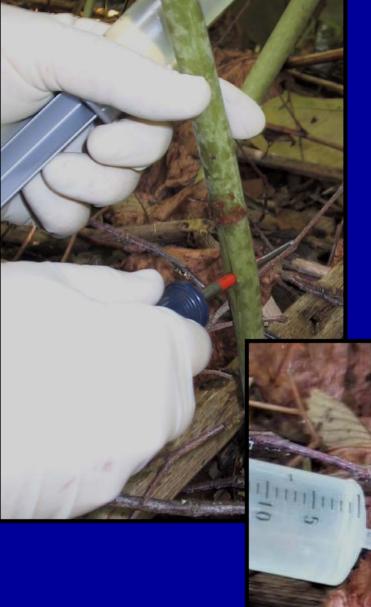
Each trial was two years long

Knotweed Field Sites

WSU NWREC -

Plots near Hutchinson Creek

Plots near Hutchinson Creek



Plots near Big Quilcene River

Field Trials, 2003-05 Materials and Methods

- Herbicides tested were glyphosate, triclopyr, or imazapyr
 - 33% herbicide wiped on lower three feet of intact stems
 - 33% herbicide wiped on stems cut at three feet
 - Stem injection of 2.5 or 5 mls of full strength herbicide
- Plots were circular, measuring 1 m in diameter, 4 replicates

Knotweed injection

-

-

New Knotweed Shoot Growth Second Year Data, April

- No differences in control between species
- All three herbicides killed the crowns of treated stems, although wipe treatments (non-cut canes) were less effective
- No treatment effect on early spring growth (likely due to undergrowth of rhizomes originating from outside the plot)
- Early-bloom treatments in the field injured Bohemian knotweed more quickly than did post-bloom treatments, but there was no difference in stem kill by April

New Knotweed Shoot Growth Second Year Data, August

- Still no major treatment differences between giant and Bohemian knotweed
- Still no differences in number of stems in treated plots
 - Control of knotweed crowns remained excellent for all treatments (except herbicide wipe)
- Herbicide symptoms were apparent up to four feet away from the application point
 - Most symptoms on knotweed, but other species showed symptoms
 - 22 incidences of 144 possible (15%)

Non-Target Symptomology

- Blackberry, 2 incidences (imazapyr)
- Red alder, 1 incidence (imazapyr)
- Reed canarygrass, 7 incidences (imazapyr)
- Salmonberry, 8 incidences (imazapyr and glyphosate)
- Snowberry, 4 incidences (imazapyr and triclopyr)

- Investigating the potential for glyphosate injury to non-target plants
 Salmonberry (*Rubus spectabilis*) or thimbleberry (*R. parviflorus*) potted in sand along with knotweed
 - Knotweed treatments
 - Spray over pots (2%)
 - Leaf wipe (33% solution)
 - Injection (full-strength product)

- Overspray (2% glyphosate)
 - Average knotweed control 81%
 - Nearly complete control of giant (100%) and Himalayan (98%)
 - Bohemian control only 68%
 - Average injury to salmonberry and thimbleberry 68%

- Leaf wipe (33% solution)
 - Average knotweed control 89%
 - Nearly complete control of Bohemian (83%), giant (98%), and Himalayan (98%)
 - Average injury to salmonberry and thimbleberry 13%

- Injection (up to 5 ml glyphosate)
 - Average knotweed control 88%
 - Nearly complete control of Bohemian and giant (88 and 100%, respectively)
 - Could not inject Himalayan, but small drops of glyphosate enough to provide 63% control

 Average injury to salmonberry and thimbleberry 26%

Injection Problems

Small diameter canes can't be injected

Photos by Cathy Lucero, Clallam County Noxious Weed Control Board

Canes may split during injection

More Field Trials

- Bohemian knotweed (Mount Vernon)
 - 2005 (aminopyralid, imazapyr, glyphosate, and triclopyr)
 - One site treated at full bloom
 - Second site mowed in mid-summer, re-growth treated when about three to four feet tall
 - 2006 (aminopyralid, imazapyr, glyphosate)
 - Stems bent and herbicides applied after ten days
- Bohemian knotweed (Pacific county, Kim Patten)
 - 2005 and 2006 tests involving application timing with aminopyralid, imazapyr, glyphosate, and triclopyr

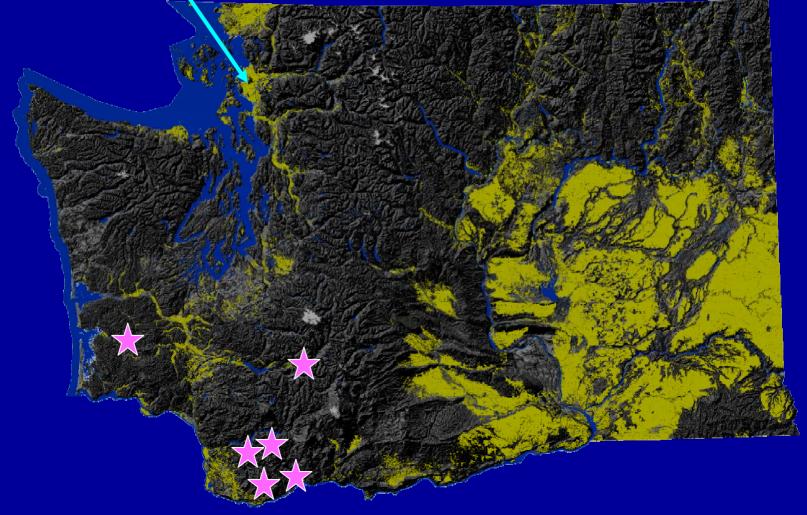
Aminopyralid does show activity, but still need fine-tuning of rates and tank mix partners

How Should Symptomatic Plants be Re-treated?

World Class. Face to Face.

Field Knotweed Control Projects, Southwestern Washington, 2004-05

 \$250K in funding from legislature for knotweed control work in southwestern Washington from July 1, 2004 to June 30, 2005


– Some \$ to me to estimate control from the various treatments

Overview of six project sites and knotweed control strategies

Project Location	Treatment site	Knotweed species	Treatment
Clark	Upper East Fork Lewis River	Bohemian	Injection, 5 mls Aquamaster per stem
Clark	Lower East Fork Lewis River	Bohemian	Foliar, 1.5% Habitat
Lewis	Upper Cowlitz River	Bohemian	Foliar, 1.5% Aquamaster + 0.75% Habitat
Pacific	Willapa River	Bohemian	Foliar, 2% Aquamaster + 0.5% Habitat
Skamania	Washougal River	Japanese (?)	Injection, 5 mls Aquamaster per stem
WA State Parks	Beacon Rock	Japanese (?)	Injection, 5 mls Aquamaster per stem

Southwest Knotweed Field Sites

WSU NWREC -

View to the south

View to the south

View to the Northwest

View to the north

View to the north

View to the south

Results of Treatments Knotweed in June, 2005

- Visual knotweed control ranged from 88 to 94%
 - No significant differences between sites, but trend toward better control with imazapyr
- Stem numbers were reduced 63 to 80%
 - Estimated 17,000 to 33,500 stems per acre before treatment and 4,600 to 10,800 after treatment
- Stem height ranged from 10 to 20 inches tall
 Expected height 72 inches (72 to 86% reduction)

Results of Treatments June, 2005

- Injury to non-target vegetation among all treatments was < 10%
 - No apparent correlation between injury and application type or herbicide choice
- All new shoots in treated areas were from rhizomes/crown (no seedlings were found)
- Very little plant growth in any plot
 - Probably speaks more to competitive ability of these knotweeds prior to treatment than by the herbicides killing other species
 - Allelopathy?