Ecological effects of invasive plants on forest ecosystems

Timothy B. Harrington, USDA Forest Service, Olympia, WA Michael Newton, Oregon State University, Corvallis, OR

Topics

- Invasion vectors & facilitators
- Ecological changes
- Mitigation approaches

Invasion vectors & facilitators

Disturbance can overcome physical and environmental barriers to invasion

Wildfire

High-severity wildfires provide an important mechanism for continued spread of invasive plants in the West

- Create extensive openings
- Enable less
 competitive species
 to reproduce

Roads and streams

 Act as corridors for propagule transport, provide habitat, and provide reservoirs of propagules

Exotic species
 most common in
 areas with high
 light and high
 road use

Forest management

- Frequency of invasive species increased with decreasing stand density from clearcutting or thinning (Gray 2005)
- Richness of invasive species was greatest in thinned stands (Bailey et al 1998)

Wind dispersal

 Halpern et al.: Forest seed banks of the Olympic Peninsula were dominated by non-native, wind-dispersed species

- Senecio sylvaticus:
 - found on virtually all PNW forest sites
 - population
 explodes 2 yr after
 forest harvesting,
 then declines

Halpern et al 1997, 1999

Wildland-urban interface

Discarded plant debris on public lands : a common source of invasive species

Ecological changes

Fire frequency & behavior

Shade-tolerant invasive species are changing the fuel structure of Douglas-fir forests

Competitive exclusion by Scotch broom

Douglas-fir mortality linked to soil water depletion by broom

Harrington & Schoenholtz 2010

Competitive exclusion by giant knotweed

Native species richness was negatively correlated with stem density of giant knotweed

Competitive exclusion by Japanese knotweed

Two-year responses:

ALRU: survival and growth↓

ullet PISI, TSHE: growth $igstyle \downarrow$

Shade tolerant species surviving ... for now.

Urgenson, UW, in progress

Altered soil chemistry under Scotch broom

Favors broom regeneration over native species

Variable	Change
Total carbon	Increased
Total nitrogen	Increased
C:N	No change
Nitrification	Increased
N mineralization	Increased
Achillea biomass	Decreased

Variable	Change
Total carbon	Increased
Total nitrogen	Increased
C:N	No change
Inorganic phosphorus	Decreased
C:P	Increased
рН	Decreased

Altered riparian chemistry under giant knotweed

Reduced input of native litter

- + Higher nitrogen resorption by knotweed at senescence
- = Poorer quality inputs for aquatic consumers

Urgenson et al. 2009

Mitigation approaches

Competitive exclusion

- Native grasses inhibited development of Scotch broom seedlings
- Prompt reforestation with site preparation, large stock, and close spacing

Harrington 2011

Promising herbicide treatments

Newer herbicide treatments provide tools for controlling seedbank-origin Scotch broom

Promising herbicide treatments

Aminopyralid is effective on many broadleaf invasive species

Harrington et al., WSWS 2011

Prescribed fire for prairie restoration

- Reduced number of Scotch broom germinants by 68%
- Repeated burning reduced soil N to pre-broom values

Haubensak et al. 2004

Prevention via forest debris

Debris reduced development of Scotch broom

Summary: effects

- Plant invasions are symptomatic of disturbance:
 - Wildfire
 - Corridors
 - Forest management
- Invasive plants:
 - Alter fuel regimes
 - Exclude native plants
 - Change soil chemistry
- Impacts to forest ecosystems:
 - Reduced biodiversity
 - Reduced productivity
 - Reduced resilience

Summary: mitigation approaches

- Manage forest disturbances wisely:
 - Treat plant invasions when they are small
 - Use best forestry technology: targeted herbicide treatments,
 large planting stock, close spacing

Limit invasion opportunities: avoid exposed soils, open

canopies

Exploit species' weaknesses:

- Germination requirements
- Seedling susceptibility
- Establish quarantine reaches and buffers to protect sensitive areas

