
INTEGRATION OF BIOLOGICAL CONTROL AGENTS WITH HERBICIDES AND GRAZING

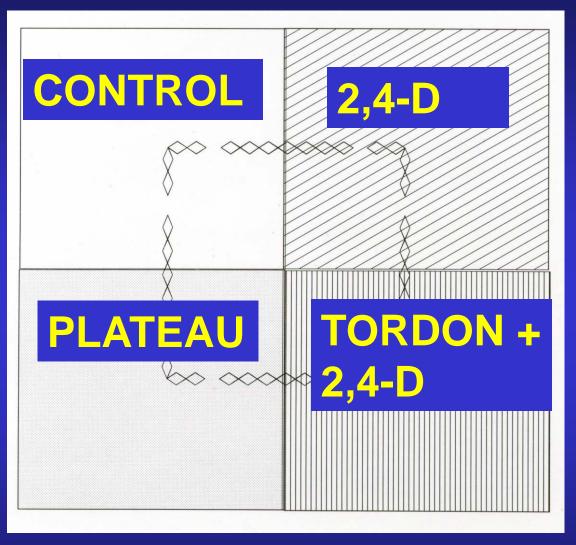
ROD LYM NORTH DAKOTA STATE UNIV.

REASONS FOR IPM

- REDUCE WEED DENSITY MORE QUICKLY
- INCREASE THE SUCCESS OF BIOCONTROL AGENTS, ONLY ABOUT 30% OF PROGRAMS ARE CONSIDERED SUCCESSFUL, MOST RELY ON ONE AGENT
- REDUCE THE USE OF A PESTICIDE OR THE NEED FOR MANY BIOCONTROL AGENTS

From Messersmith and Adkins. 1995. Weed Technol. 9:199-208.

Gall midge (*Spurgia esula*)



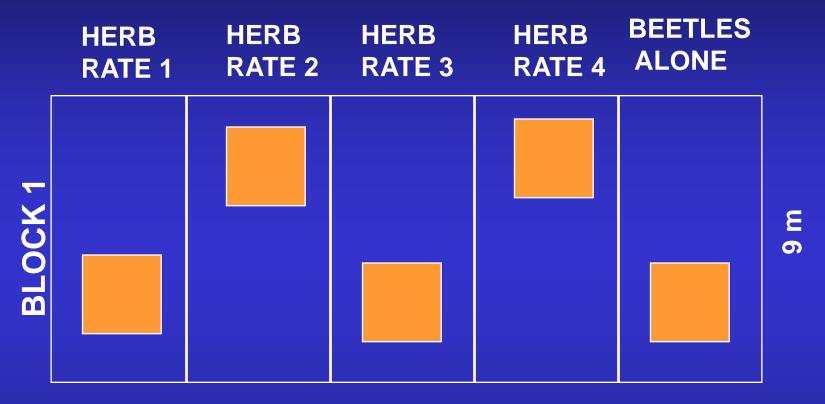
Useful in wooded and moist areas

Prevents seed set

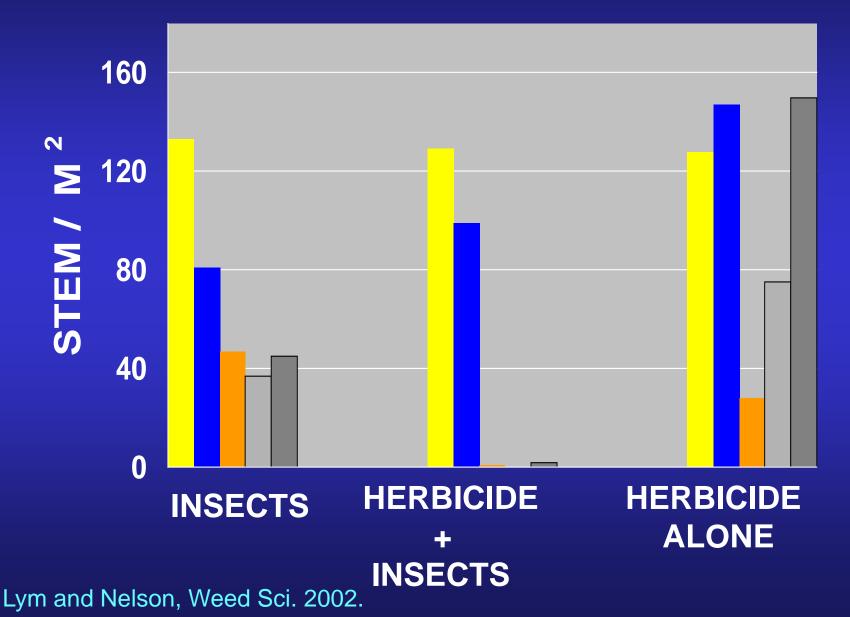
WORKED WELL AS LONG AS ≈ 25% OF LEAFY **SPURGE** WAS NOT SPRAYED.

Lym and Carlson. 1994. Weed Technol. 8:285-288.

A. NIGRISCUTIS


Aphthona insectary near Minot, ND.

Helicopter was spraying leafy spurge in the area and came up over the hill.



HERBICIDES, APHTHONA, OR BOTH

3 m = SCREENED CAGES WITH 450 A. LACERTOSA

LEAFY SPURGE CONTROL

HERBICIDES, APHTHONA, OR BOTH

- RESULTED IN MORE RAPID CONTROL, 3 TO 5 YEARS EARLIER THAN APHTHONA ALONE
- MOST SUCCESSFUL WHEN USED WITH ESTABLISHED APHTHONA POPULATIONS THAT WERE NOT INCREASING IN SIZE OR REDUCING LEAFY SPURGE DENSITY

Fall regrowth after Aphthona feeding.

STO -Jar

Goats and sheep will graze leafy spurge.

A. NIGRISCUTIS COMBINED WITH SHEEP GRAZING REDUCED LEAFY SPURGE STEMS MORE THAN EITHER AGENT ALONE

Hansen. 1993. GPAC-14 Proceed. 47-48.

COMBINED HERBICIDES WITH GALLERUCELLA FOR LYTHRUM CONTROL

Lindgren et al. 1998. Bio. Cont. 12:14-19.

TRICLOPYR (GARLON) DID NOT EFFECT G*ALERUCELLA* ADULTS, EGG MASSES, OR LARVAE.

WORK WAS DONE WITH POTTED PLANTS.

Lindgren et al. 1998. Bio. Cont. 12:14-19.

Integrating biological control with herbicides for Dalmatian toadflax control

Stephen Enloe, Andrew Norton, Tim Collier, Paul Meiman

Dalmatian toadflax invasion following fire

Dalmation toadflax stem mining Weevil *Mecinus janthinus* Germar.

Control of Dalmatian toadflax with herbicides

- A few herbicides are "effective"
 - Picloram
 - Imazapic
 - Chlorsulfuron
- Treatment at flowering provides variable control
- Fall treatment timing not well studied

Longmont, CO

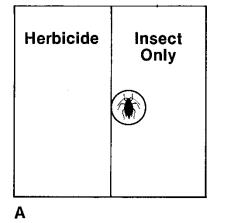
Cheyenne, WY

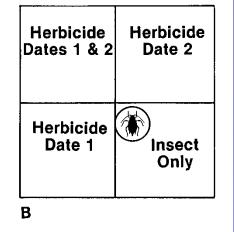
as assume a manufacture of the state of the

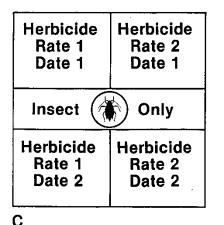
Results 20 MAT

- Dalmatian toadflax control
 - increased toadflax control with herbicide plus *Mecinus* only at Centenial

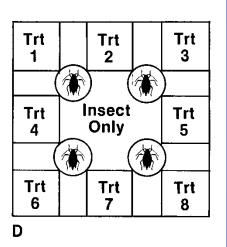
- Mecinus not significant otherwise


ADVERSE EFFECTS OF HERBICIDES ON AGENTS


- Rhinocyllus conicus did not survive beyond 2nd instar when 2,4-D was applied within 48 h of oviposition (Tumble and Kok, 1979)
- Klein (1999) observed mass mortality of biocontrol agents on cactus following herbicide application.
- Herbicide did not kill insects, the timing of the application removed the food source at a critical time during the agents life cycle.


INTEGRATION WITH HERBICIDES

MUST BE SURE THAT


- HERBICIDE DOES NOT DIRECTLY HARM AGENT
- HERBICIDE DOES NOT REDUCE FOOD SOURCE BELOW A CRITICAL LEVEL
- PREDATORY INSECTS ARE NOT INCREASED

Insect release site

BESIDES HERBICIDES:

FERTILIZERS MOWING PATHOGENS ETC.

BEST IF INSECT IS MOBILE (NOT EGG OR LARVAE)

TIME TO ADULT LIFE-CYCLE

From Messersmith and Adkins. Weed Technol. 9:199-208.

Trt = Treatment

SUMMARY

- INTEGRATED SYSTEMS CAN RESULT IN MORE RAPID AND ECONOMICAL WEED CONTROL BUT ARE WEED SPP. DEPENDENT
- MORE COMPLETE CONTROL THAN
 ANY METHOD USED ALONE
- VERY DIFFICULT TO CONTROL INVASIVE SPECIES WITH ONE TOOL